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Resistive-ballooning-mode characteristics in the tokamak edge region
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The stability characteristics of resistive ballooning modes are examined near a tokamak edge region by
including the effects of resistivity gradients. It is shown that the growth rates of electrostatic and A’-
driven resistive ballooning modes are enhanced, due to parity-mixing effects arising through a linear cou-

pling to rippling modes.
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Recent observations on the L-H transitions [1-3] (.e.,
from low to high confinement) and edge turbulence [4,5]
in tokamaks have stimulated considerable interest in
resistive-ballooning modes. Since the edge region is
known to have steep gradients in density and temperature
[3], particularly in the vicinity of the separatrix or a mag-
netic diverter, resistive-ballooning modes are naturally
expected to grow there. There is also some experimental
evidence (from measurements of radial flux that display
large poloidal symmetry [6]) that these modes could be of
potential importance for explaining the overall degrada-
tion of confinement in tokamaks. A large number of
studies have therefore been devoted to various
refinements of the theory of resistive-ballooning modes.
These include neoclassical viscosity effects [7,8], parallel
ion sound compression [8], diamagnetic drift [9], etc. In
this paper we consider the effect of the resistivity gradient
on the characteristics of the fast resistive-ballooning
mode and find that the growth rates of electrostatic and
A’-driven modes can get enhanced. Thus, although the
rippling mode may not directly contribute to the edge
fluctuations (as has been shown before [10]), they might
still play an interesting role through their contribution to
the evolution of the resistive-ballooning modes. We find
that the principal physical mechanism responsible for the
modification of the stability properties of the ballooning
modes arises through the mixing of its parities brought
about by the new linear coupling terms.

Consider a plasma edge region where the electron tem-
perature is typically quite low (7, <100 eV) and the den-
sity fairly high. Hence the resistive (magneto-
hydrodynamics) description becomes appropriate for the
plasma behavior there and the dynamical equations for
the resistive-ballooning modes can be easily derived from
them [11] by adopting the ballooning-mode representa-
tion,
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where 7,0 represent polar flux coordinates, § is the
toroidal angle, Q is any physical quantity, x=r—r,,,,
7nm. is the mode-rational surface, g,=g(r,,,)=m/n,
q(r)=rBy/RB,(r), g'=dq /dr, and m and n are the po-
loidal and toroidal mode numbers, respectively. The
model equations are
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where o =(4mqR /cBokg)dJ o /dr), a=—8mwq*Rp,/Bj,
po=dP,/dr; the perturbed pressure P is expressed in the
units of (kgpo/Bow), ®,=sV,/qR, w;=sC;/qR,
C,=V'T,/M, s=dlng/dlnr, wr=—(keqRcJy/
By)dny/dr, and vg =moc’k? /4m. Here A, is the com-
ponent of vector potential along the equilibrium magnetic
field, and ¢ is the electrostatic potential. Equations (2),
(3), and (4), respectively, describe the quasineutrality con-
dition, the modified Ohm’s law, and the equation of state.
In driving Eq. (3) the resistivity convection law (namely,
dn/dt =0) has been used. In Egs. (2) and (3), the parity
mixing arises due to the terms o 4, and (wg /)¢, which
are, respectively, the driving terms for m =2 type resis-
tive tearing and rippling modes. In the plasma edge re-
gion, the term proportional to wy is dominant and we
will confine ourselves to the study of the effect of this
parity-mixing term on resistive-ballooning modes. In
particular, we will consider the linear stability charac-
teristics of fast growing resistive-ballooning modes, in the
limit, o >>w,/s. This frequency regime is the most
relevant from an experimental point of view for the edge
region. Hence terms involving (o, /s®)* will be neglected
in Eq. (3). It may, however, be pointed out that the in-
clusion of such terms can, in general, lead to a reduction
of growth rates due to a coupling to acoustic waves. Our
model equations also do not take into account the effect
of parallel thermal conductivity on the ballooning modes,
which is justified as long as the mode width is small com-
pared to the thermal diffusivity width, x,. The latter is
defined by L.V 'y /koV/ X|» where L is the shear length,
kg=m /r, x, is the parallel thermal conductivity, and y is
the growth rate of the rippling mode. Near the mode-
rational surface x =0 this approximation is quite good
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and thermal effects can be neglected. Likewise the rip-
pling mode driving source is simply modeled by the resis-
tivity gradient term, ignoring the contribution of the im-
purity ion gradient terms which could dominate when
VZ 4 gets significant. However, the effect of this term
would not qualitatively change our results, and the sim-
ple driving term captures the essential ingredient of the
parity-mixing effect.

Under the above approximations, Egs. (2)-(4) become
simplified for obtaining analytical solutions in the resis-
tive layer. The ballooning mode driving term introduces
two scale lengths, 6 ~1 and 6~ 1/s, which can be exploit-
ed for a multiple scale analysis of the equations. It is also
convenient [12] to express ¢=dy(z)+¢.(z)cosh
+¢,sin6, where z=s0, ¢, (z) <<¢y(z). Substituting this
expression for ¢ in Egs. (2)-(4) and following the usual
averaging procedure [12], the poloidal flux surface-
averaged equation in ¢, is given by
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where a}=a’/(1+w% /0?), p=wg/so, and f(z)

=(1+z%)/{1+ivg(1+2z?)/w}. Equation (5) is the ei-
genvalue equation governing the modified resistive-
ballooning-mode characteristics in the resistive layer. It
must be noted that the condition |ivg /w|z2>>1 defines
the domain of validity of localized electrostatic resistive-
ballooning modes, while regions in z space typified by
livg /w|z? <1 describe the evolution of resistive modes
(A’-driven modes) in which magnetic field perturbations
play a crucial role. Clearly, in the absence of linear cou-
pling to rippling modes (i.e., £t =0), the dispersion rela-
tion for growing resistive-ballooning modes can be ob-
tained from Eq. (5) by demanding that the eigensolutions
be bounded at z==o. This convergence condition
yields (for |ivg /w|z?>>1)
2
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Similarly, neglecting the driving term for the resistive-
ballooning mode [namely, the (a?/2s?) term], Eq. (5)
leads to the electrostatic rippling mode dispersion rela-
tion [13] (for |ivg /w|z2>>1),
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For the case when wz 70, we shall first consider the elec-
trostatic localized mode within the resistive layer for
z>>1 [in this limit, f(z) can be nearly treated as a con-
stant]. Then Eq. (5) reduces to

d’¢,
dz?

where ¢, =doexp(+puz/2), A=(0?/w* +vad/2s?), and
v=(ivg /®). From the definition of a, it is seen that the

+ ¢,=0, (8)
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ballooning mode driving term, a3/2s? in A, is modified
due to the rippling parameter wy. Equation (8) is a para-
bolic cylinder equation, and the dispersion relation for
the modified resistive-ballooning mode can be derived by
demanding that the solutions be bounded at z==+ 0.
Thus we have
2 2 .
A ) S )
® 2s VR (25)°0
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in which the right-hand side represents the new contribu-
tion due to linear coupling of rippling modes with bal-
looning modes under discussion. Equation (9) admits
seven roots, in general, for different values of the pressure
gradient parameter (a) and the resistivity gradient term,
g, and out of which only those satisfying the convergen-
cy criterion are physically admissible modes. It is clear
from Eq. (9) that the limits of the electrostatic rippling
mode [Eq. (7)] and fast resistive-ballooning mode [Eq. (6)]
can be easily recovered by setting either the pressure gra-
dient term (a) or the resistivity gradient term (wg) to
zero. To study the influence of the rippling term on the
resistive-ballooning mode, we have solved Eq. (9) numeri-
cally. Of the many roots of Eq. (9) we systematically
track the fast resistive-ballooning mode and study its
growth rate as a function of the rippling parameter. The
results are displayed in Fig. 1, where the growth rate
(normalized to the wusual electrostatic resistive-
ballooning-mode growth rate in the absence of coupling
to the rippling mode) is plotted against the rippling pa-
rameter Pp [where Pp =wpg /(vK30w¥?) is a measure of
the resistivity gradient]. We find that the growth rate of
the fast resistive-ballooning mode (electrostatic type) is
enhanced as a function of the rippling parameter, over a
wide range of the parameter L, [we display the results
for two values of LF=108 and 107, respectively, where
Lp=Qw (S /vga)*31/(28)*].

We next examine the A’-driven modes corresponding
to the frequency regime w>w,/s. It is convenient to
rewrite Eq. (5) in terms of a new variable, J=22A“.
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FIG. 1. Plot of %l/l}e §/r30wth rate Im({2) as a function of Py
[where Pr =wg /(vg w4 ) is a measure of the resistivity gra-

dient]. The growth rates are normalized to the electrostatic-
type resistive-ballooning-mode growth rate for curves 1
and 3 and to the A’-driven mode for curve 2 and
Lp=Qw S /vra)*?1/(28)%
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Thus, Eq. (5) for z2>> 1 becomes

d (1dr|, padl_ , [%ﬂ
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z2 dz z2 dz

dz J=0. (10)

Equation (10) is not amenable to exact analytical solu-
tions. Among the approximate techniques available to
solve this equation, the methods of matched asymptotic
expansion and variational procedure are commonly em-
ployed. We will obtain a dispersion relation from Eq.

(10) by using the variational technique [14]. Setting
J =exp(—uz /2)J, Eq. (10) becomes
d |14, 1 e _
az |52 a2 2 A 4 +z3 +Av |J,=0.
(11)

This equation admits variational treatment, in that it can
be obtained from a functional,

2
+oo 1 | dJy o1 u
K f— ®© [ 22 dz Jl 22 4
+E v ]dz .2
z
Choosing a simple trial function of the form

exp(—Az?%/2) with real (A)>0, we solve the equations
K(A)=0 and 8K /3A=0 to obtain the appropriate
dispersion relation. Note that the A’ term is conveniently
introduced in this procedure by the prescription [14] of
replacing the 1/z% term with 1/z2—8(z)/A’, where 8(z)
is the Dirac & function and A’ is the conventional stabili-
ty parameter representing the jump in the logarithmic
derivative of A across the resistive layer. The dispersion
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relation we obtain is
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In the above, setting 4 =0, one recovers the dispersion re-
lation for the usual A’-driven resistive-ballooning mode.
The p terms represent the coupling of the resistive-
ballooning mode to the rippling mode. Equation (20) is
difficult to solve analytically except under drastic simpli-
fying assumptions. We have therefore chosen to solve it
numerically and study the influence of the rippling pa-
rameter on the fast-ballooning-mode branch. The results
are displayed in Fig. 1, where we see that the effect is
once again an enhancement of the growth rate. Thus
both electrostatic and A’-driven modes are destabilized
by the presence of resistivity gradient coupling. At the
tokamak plasma edge where the resistivity gradients are
fairly strong, the linear evolution characteristics of the
resistive-ballooning modes can therefore get significantly
modified.

In summary, we have investigated the stability charac-
teristics of fast resistive-ballooning modes in the presence
of linear coupling to rippling modes. Within the frame-
work of our simple model we find that the growth rates of
both electrostatic and A’-driven resistive-ballooning
modes can get significantly enhanced due to the presence
of parity-mixing terms. Of course one needs to carry out
a nonlinear analysis to ascertain the final behavior of
these modes, but the present calculations demonstrate in
a simple way the influence of resistivity gradient terms in
the linear theory of resistive-ballooning modes. In view
of their importance in the edge region, such effects should
therefore be incorporated in any detailed physical model
of the resistive-ballooning mode.
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